A semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws

For a nonlinear scalar conservation law in one-space dimension, we develop a locally conservative semi-Lagrangian finite difference scheme based on weighted essentially non-oscillatory reconstructions (SL-WENO). This scheme has the advantages of both WENO and semi-Lagrangian schemes. It is a locally mass conservative finite difference scheme, it is formally high-order accurate in space, it has ...

متن کامل

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

Hybrid Compact-WENO Finite Difference Scheme with Conjugate Fourier Shock Detection Algorithm for Hyperbolic Conservation Laws

For discontinuous solutions of hyperbolic conservation laws, a Hybrid scheme, based on the high order nonlinear characteristic-wise weighted essentially non-oscillatory conservative finite difference (WENO) scheme and the high resolution spectral-like linear compact finite difference (Compact) scheme, is developed for capturing shock and strong gradients accurately and resolving smooth scale st...

متن کامل

Finite Difference Schemes for Scalar Conservation Laws with Source Terms

Explicit and semi{implicit nite diierence schemes approximating nonhomogenous scalar conservation laws are analyzed. Optimal error bounds independent of the stiiness of the underlying equation are presented.

متن کامل

A semi–discrete high resolution scheme for nonlinear scalar conservation laws

The purpose of this paper is twofold. Firstly we carry out an extension of the fully discrete third order TVD scheme, for linear case, presented in [8] to nonlinear scalar hyperbolic conservation laws for one and two dimensions. Secondly, we propose a semi-discrete version of the scheme. Time evolution is carried out by the third order TVD RungeKutta method. The advantages of the scheme are its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2016

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2016.06.027